
1

RMV ELECTRONICS INC.
Application Note:

Application #: 00005

Date: September 1994

Description: Using the ITC232-A for Pulse Counting. Status: Draft version

This circuit illustrates the of the ITC232-A in a pulse counter and control application. The maximum
number of counts is 24 bits (~16 million) and a presettable compare value can be added to initiate a
control action when the correct number of pulses has been received. A secondary counter (with two more
able to be added on) with a maximum count of 16 bits each (~65 thousand) can also count the pulse
stream and indicate when a preset number of pulses is reached. This counter could be used as a warning
indicator before the primary counter reaches its action point.

OPERATIONAL DESCRIPTION

Please refer to the schematic diagram and the functional software listing. Also refer to the appropriate
manufacturers' data sheets and the ITC232-A user's manual for further details.

The circuit is implemented using timer/counter combinations. In this example we have used the Intel (or
equivalent) 82C53 Programmable Interval Timer (PIT) and the LSI Computer Systems LS7166
MultiMode Counter (MMC). The 82C53 contains three independent 16 bit counters, each capable of
running in one of several modes. The LS7166 is similar in nature and contains a single counter. The
LS7166 was used because of it's enhanced operation and single 24 bit counter. If reduced count size and
slower operation is adequate, the LS7166 can be removed and the other counters within the 82C53 can
be used instead. This would reduce the chip count and lessen the circuit cost. The circuit also includes a
single pole, double throw relay for immediate control action capability, along with a transistor driver.

Counter 0 in the PIT is used in terminal count mode. The counter value is set to the warning set point.
When this number of counts has been reached, an IRQH signal will be produced, signaling the PC. The
MMC is initialized as a standard up counter with compare (COMP) output enable. The count value when
the action is to occur is entered in the compare registers. When the count value is reached, the borrow
(BW) pin will be asserted. This pin both signals the PC by the generation of a IRQL signal, as well as
turning on the transistor. This, in turn, will energize the relay. The form 'C' contacts on the relay can be
used for a variety of purposes. The counts in the MMC (and the relay) are reset by simply bringing the
reset pin to ground or through software and the ITC232-A. The actual count value can be read at any
time.

By using one of more of the 82C53 counters in the same mode, several levels of warnings or other
control actions can be initiated. If desired the out lines of each counter can also be tied to external
hardware such as lights, relays, etc.

When using the LS7166 as the counter, the input pulse frequency is limited to 20 Mhz. Replacing the
LS7166 with the 82C53 will reduce the upper pulse frequency to 8 Mhz. If higher frequency operation is
desired, a prescaler can be inserted before the counter and the results calculations modified accordingly.
For example, an ECL divide by 10 prescaler would allow operation to 200 Mhz. However, the counters
are then operating effectively at 10 pulses per count and the warning and control numbers would have to
be adjusted accordingly.

/* Port C is a bidirectional 8 bit data bus
Functional code listing for the pulse counter application circuit. Port B, bits 0 and 1 are address lines used to select particular

ITC232 port assignments are as follows (refer to schematic
diagram) Port B, bits 2 and 3 are the active low read and write lines

registers
on the PIT and MMC

2

respectively char Tvalue);
Port B, bit 4 is the active low chip select for the PIT
Port B, bit 5 is the active low chip select for the MMC main()
Port B, bit 6 is not used {
Port B, bit 7 is an output for resetting the MMC counter char count_hi,count_mid,count_lo, input;
IRQH is used to indicate the PIT pulse counter has reached it's long count_total, MMC_preset;
preset
IRQL is used to indicate the MMC pulse counter has reached
it's preset
*/
/* User preset definitions here. Alternatively, the user can enter
the values
via the PC software, or by whatever other means may be
necessary.
#define PIT_preset 1000
#define MMC_preset 2000

/* Constant definitions */
#define PIT_CTR_0 0xec
#define PIT_CTR_1 0xed
#define PIT_CTR_2 0xee
#define PIT_CONTROL 0xef
#define MMC_DATA 0xdc
#define MMC_CONTROL 0xdd
#define BAUD_9600 0x0c
#define COMM_1 0x01
#define COMM_2 0x02
#define NULL 0x00 parameter */

/*function declarations*/ out_data(PIT_CTR_0,PIT_preset_lo); /*counter 0 low byte*/
/* function for sending data thru the ITC232 to peripherals */ out_data(PIT_CTR_0,PIT_preset_hi); /*counter 0 hi byte*/
void out_data(unsigned char a, unsigned char b);
/* function for receiving data from ITC232 peripherals */ /*Reset MMC, then setup for counting up, normal mode,
char in_data(unsigned char a);
void ITC_send(char *ptr); /* function to send a string to
ITC232 */ /* send master reset */
void ITC_send_no_wait(char *ptr); /* function to send a string out_data(MMC_CONTROL, 0x20);
to ITC232 */
char ITC_data(void); /*function that returns the data value in
response

to a port read operation */

/* external function for setting up serial ports */
extern void far Setup(unsigned int Rate, unsigned char Parms,
unsigned char SelBase);
/* Setup(Divisor, Parms, SelBase) */
/* Divisor = 115200/desired baud rate */
/* Parms = 0 | a | bcd | e | fg */
/* a = 0 for break */
/* = 1 for space */
/* bcd = 000 none parity */
/* = 001 odd parity */
/* = 011 even parity */ middle byte*/
/* e = 0 for 1 stop bit */ out_data(MMC_DATA, MMC_preset_hi); /*comparator 0 hi
/* = 1 for 2 stop bits */
/* fg = 10 for 7 bits per character */
/* = 11 for 8 bits per character */
/* SelBase = 1 for COM1 */
/* 2 for COM2 */
/* 3 for COM3 */
/* 4 for COM4 */

/* external functions for installing an comm interrupt, removing
same,
 and restoring previous port operation */
extern void far Restore();
extern void far SetInt();
extern void far RemInt();
extern unsigned int far Receive(unsigned char Rfl, unsigned
char Rvalue);
extern unsigned int far SendChar (unsigned char Sfl, unsigned if((char)input == 'H')

char PIT_preset_lo, PIT_preset_hi;
char MMC_preset_lo, MMC_preset_mid, MMC_preset_hi;
int PIT_preset;
/*Initialize the PC serial port as for 9600 baud, no parity, 8 bits,
1 stop*/
Setup(BAUD_9600, 3, COMM_1);

/*Initialize the ITC232 for Configure Results Ascii Program*/
ITC_send("CRAP\r");

/*Set Port B outputs bit 6 thru 0 high*/
ITC_send("PWB$7F\r");

/*Set Port B direction as bits 7 and 5 thru 0 as outputs, bit 6 as
input*/
ITC_send("PCB$BF\r");

/*Set PIT counter 0 mode to 0 (terminal count), two byte xfer,
binary counting*/
out_data(PIT_CONTROL,0x30);
PIT_preset_lo = PIT_preset; /* lo byte only from user

PIT_preset_hi = PIT_preset >> 8; /* hi byte */

compare enabled,
external counter reset enabled, binary count */

/* set input control register */
out_data(MMC_CONTROL, 0x48);
/* set output control register */
out_data(MMC_CONTROL, 0xb0);
/* set quadrature control register */
out_data(MMC_CONTROL, 0xc0);

/* set user compare values in MMC preset */
MMC_preset_lo = MMC_preset; /* lo byte only from user
parameter */
MMC_preset_mid = MMC_preset >> 8; /* middle byte */
MMC_preset_hi = MMC_preset >> 16; /* hi byte */
out_data(MMC_CONTROL, 0x01); /*
out_data(MMC_DATA, MMC_preset_lo); /* comparator 0 low
byte*/
out_data(MMC_DATA, MMC_preset_mid); /*comparator 0

byte*/

/* main loop is here, the process is stopped by hitting any key */
while(!kbhit())
{
/* deassert the counter reset line */
ITC_send("PWB$FF\r");

/* now wait for either an IRQL or IRQH interrupt from the
ITC232 */
do
 {
 input = Receive(0,0);
 }
 while(input == 0); /* if nothing received, just wait */

3

 { itoa((a & 0x7f),value,16);
 /* the PIT counter has reached terminal, send a message strcpy(string,"PWB$");
*/
 printf("\nPIT counter preset value reached\n");

 }
else
 {
 /* the MMC counter has reached terminal, send a
message */
 printf("\nMMC counter comparator value reached\n");
 }

} /*end of while(kbhit... loop */
printf("\nInput Pulse Counter function halted\n");
/* reset the counter and release output control */
ITC_send("PWB$7F\r");
out_data(MMC_CONTROL, 0x20);

} /*end of main*/

/***************************************/
/* out_data */
/* sets up 'bus' for a write operation */
/***************************************/
void out_data(a,b)
unsigned char a,b;
{
char string[8], value[3];

/* set string ends to NULLS */
string[7] = value[2] = NULL;

/* set port C to output */
ITC_send("PCC$FF\r");

/*setup data value on Port C*/
strcpy(string,"PWC$");
itoa(b, value, 16); /* convert the number to be sent to an ascii
hex string */
if(b < 0x10)

strcat(string,"0");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*setup register address */
itoa((a | 0x7c), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring chip select low */
itoa((a & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring write low */
itoa((a & 0x77), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring write high*/

strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring chip select high */
itoa((a | 0x7c), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* then return to idle state */
ITC_send("PWB$7F\r");
}

/***************************************/
/* in_data */
/* sets up 'bus' for a read operation */
/***************************************/
char in_data(a)
unsigned char a;
{
char string[8], value[3], read_data;

/* set string ends to NULLS */
string[7] = value[2] = NULL;

/* set port C to inputs */
ITC_send("PCC$00\r");

/* setup register address */
itoa((a | 0x7c & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* bring chip select low */
itoa((a & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* bring read low*/
itoa((a & 0x7b),value,16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* read Port C */
ITC_send_no_wait("PRC$\r");
read_data = ITC_data();

/*bring read high*/
itoa((a & 0x7f),value,16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* then return to idle state */
ITC_send("PWB$7F\r");

/*return value read*/ }
return read_data; }
}

/**/ /* ITC_data */
/* ITC_send */ /* retrieves the data recv'd from a */
/* sends a string out the comm port */ /* port read operation */
/* then waits for the ITC '>' prompt */ /***************************************/
/**/ char ITC_data()
void ITC_send(str) {
char *str; char string[3], value, *ptr, result;
{ int rval=0;
int rval, tval;

while(*str != 0) /* loop until end of string (NULL) */ string[2] = NULL;
{ do

 do {
 { do
 tval = SendChar(0, *str); /* wait until tx buffer empty */ {
 } rval = Receive(0,0);
 while(tval == 0xff00); }

 str++; /* after sending character, go send the next one */ switch(value = (char)rval)
} {

do /* after final character sent, went until '>' sent back case 'O': /* if characters are O, K, $, or >, ignore */
*/
 {
 do
 {
 rval = Receive(0,0); /* go get receive buffer status
and/or data */
 }
 while(rval == 0); /* loop until a character received */
 }
while((char)rval != '>'); /* continue looping until prompt
character rx'd */

}

/***************************************/
/* ITC_send_no_wait */
/* sends a string out the comm port */
/* does not wait for any response */
/***************************************/
void ITC_send_no_wait(str)
char *str;
{
int rval, tval;

while(*str != 0) /* loop until end of string (NULL) */
{

 do
 {
 tval = SendChar(0, *str); /* wait until tx buffer empty */
 }
 while(tval == 0xff00);

 str++; /* after sending character, go send the next one */

/***************************************/

ptr = string;

 while(rval == 0);

 break;
 case 'K':
 break;
 case '$':
 break;
 case '>':
 break;
 case 'L':
 printf("\nOverflow or Underflow has occured\n");
 break;
 default: /* otherwise characters should be results */
 (ptr++) = value; / put results in string */
 }
 }
while(value != '>'); /* continue looping until prompt character
rx'd */

/* string should now contain ascii hex value of result */
/* convert from hex string to a number */
if(isdigit(string[0]))
 result = (string[0] - 0x30) * 0x10;
else
 result = (string[0] - 0x37) * 0x10;
if(isdigit(string[1]))
 result = result + (string[1] - 0x30);
else
 result = result + (string[1] - 0x37);
return result; /* return results converted to a number */
}

5

6

