
1

RMV ELECTRONICS INC.
Application Note:

Application #: 00004

Date: September 1994

Description: Using the ITC232-A for Period Measurement. Status: Draft version

The basic operating principle to measure period is to generate a known reference frequency, and then
use the input pulse stream to gate this frequency into a counter. The counter is then read and the period
calculated.

For example, the reference frequency is 1 Mhz (i.e. the counter is being incremented every 1
microsecond). For one period of the input pulse stream, the period gates the reference into a counter. If,
at the end of this cycle, the counter reads 11432, the input period can be calculated by:

Counter Value / Reference Frequency = Period in seconds

In our example, the result is 11432 / 1,000,000 = 0.011432 (or about 11 msec.)

The higher the reference frequency, the more counts are received and the higher the effective resolution
of the period measurement. The limitation is the size of the counter. If the input period is too long, the
counter may overflow and the results will be incorrect.

OPERATIONAL DESCRIPTION

Please refer to the schematic diagram and the functional software listing. Also refer to the appropriate
manufacturers' data sheets and the ITC232-A user's manual for further detail.

The circuit is implemented using timer/counter combinations. In this example we have used the Intel (or
equivalent) 82C53 Programmable Interval Timer (PIT), the LSI Computer Systems LS7166 MultiMode
Counter (MMC), and a crystal based oscillator module. The 82C53 contains three independent 16 bit
counters, each capable of running in one of several modes. The LS7166 is similar in nature and contains
a single counter. The LS7166 was used because of its enhanced operation and 24 bit counter. If a
reduced counter size (and therefore a reduced resolution) and slower operation is adequate, the LS7166
can be removed and another counter within the 82C53 can be used instead. This would reduce the chip
count and lessen the circuit cost. The circuit also includes a 74HC73 dual JK flip flop. The input pulses
pass through one of JK flip flops to divide the input frequency by two. This results in an output pulse
width that corresponds to the input period.

The interface between these devices and the ITC232-A is through all of Port C, 6 bits of Port B, and both
interrupt lines. Port C is used as a bidirectional data bus, while the Port B lines act as address and bus
control lines. A sequence of port writes and reads effectively emulates the operation of a microprocessor
data bus, which both the PIT and MMC were designed for.

Counter 0 in the PIT is used as a programmable rate generator, dividing the frequency of the oscillator
module by the value programmed into the counter, i.e. there will be one output pulse produced every
time the counter reaches the preset number. The output of this counter is the reference frequency and
directly feeds the MMC counter input. The MMC is initialized as a standard up counter with carry (CY)
output. The entire circuit is controlled by a single signal from an ITC232-A port pin (Port B, bit 7) and
monitored by the ITC232-A interrupt lines.

With the control signal in a low state, the flip flops are cleared. The counter gate (ABGT) signal is high,
disabling counts. To start the sequence, the control line is brought high. This releases the clear signal to
the flip flops. The first flip flop U4A will now change output states (the Q output going from low to high)
on the first rising edge on the input.
At the same time, the ABGT signal goes from high to low, allowing the MMC counter to begin counting
the reference frequency. The falling edge of the input signal has no effect. The next rising edge will
again toggle the outputs of U4A. The falling edge of the Q output will clock U4B. The Q output of U4B
will then go low, and since this line feeds the J and K inputs of U4A, U4A will be stopped from any further
toggling. At the same time U4A Q output goes low, U4A not Q goes high, freezing the MMC counter. The
IRQH line will be set, causing the ITC232-A to notify the PC that the cycle has been completed. This
state will remain in effect until the ITC232-A once again asserts and releases the flip flop clear lines. The
counter can be read and the pulse width calculated. If the MMC counter overflows, the carry output
signals the ITC232-A through the IRQL line, notifying the PC.

2

As described above, the final value would then be calculated by dividing the number of counts by the
reference frequency.

The input pulse stream frequency (and thereby the minimum period measurable) is limited by the flip
flops. Using ICs such as 74F73 instead of the HC series would increase the maximum input.

The resolution of the system is limited to the frequency of the PIT 0 output clock. The input to the PIT is
8 Mhz maximum and the minimum divide rate is two. The maximum reference frequency fed to the
MMC is therefore 4 Mhz (a time base of 250 nsec.). The maximum resolution in this case would be one
count or 250 nsec. Maximum pulse width at this resolution would be 24 bits binary (~16 million counts) or
slightly over 4 seconds. For period measurement in excess of 4 seconds, the reference frequency would
be reduced by increasing the divide rate in PIT counter 0. By increasing the divider to maximum, periods
in the order of hours could be measured.

Circuit accuracy is based primarily on the accuracy of the crystal oscillator, which is usually quite good.
Other sources of error are the clock input to gate output delays in the flip flops and the ABGT response
time in the MMC. All these delays are in the tens of nanosecond range and should contribute no
significant error (on the order of 1 count or less at high reference frequency rates).

/* /* a = 0 for break */
Functional code listing for the input period measurement /* = 1 for space */
application circuit.

ITC232 port assignments are as follows (refer to schematic
diagram):
Port C is a bidirectional 8 bit data bus
Port B, bits 0 and 1 are address lines used to select particular
registers
on the PIT and MMC
Port B, bits 2 and 3 are the active low read and write lines
respectively
Port B, bit 4 is the active low chip select for the PIT
Port B, bit 5 is the active low chip select for the MMC
Port B, bit 6 is an input for monitoring the count cycle status
Port B, bit 7 is an output for controlling the count cycle
operation
IRQH is used to indicate the count cycle has completed
IRQL is used to indicate an overflow condition
/*

/* Constant definitions */
#define OSC_FREQ 8000000
#define PIT_CTR_0 0xec
#define PIT_CTR_1 0xed
#define PIT_CTR_2 0xee
#define PIT_CONTROL 0xef
#define MMC_DATA 0xdc
#define MMC_CONTROL 0xdd
#define BAUD_9600 0x0c
#define COMM_1 0x01
#define COMM_2 0x02
#define NULL 0x00

/*function declarations*/
/* function for sending data thru the ITC232 to peripherals */
void out_data(unsigned char a, unsigned char b);
/* function for receiving data from ITC232 peripherals */
char in_data(unsigned char a);
void ITC_send(char *ptr); /* function to send a string to
ITC232 */
void ITC_send_no_wait(char *ptr); /* function to send a string
to ITC232 */
char ITC_data(void); /*function that returns the data value in
response

to a port read operation */

/* external function for setting up serial ports */
extern void far Setup(unsigned int Rate, unsigned char Parms,
unsigned char SelBase);
/* Setup(Divisor, Parms, SelBase) */
/* Divisor = 115200/desired baud rate */
/* Parms = 0 | a | bcd | e | fg */

/* bcd = 000 none parity */
/* = 001 odd parity */
/* = 011 even parity */
/* e = 0 for 1 stop bit */
/* = 1 for 2 stop bits */
/* fg = 10 for 7 bits per character */
/* = 11 for 8 bits per character */
/* SelBase = 1 for COM1 */
/* 2 for COM2 */
/* 3 for COM3 */
/* 4 for COM4 */

/* external functions for installing an comm interrupt, removing
same,
 and restoring previous port operation */
extern void far Restore();
extern void far SetInt();
extern void far RemInt();
extern unsigned int far Receive(unsigned char Rfl, unsigned
char Rvalue);
extern unsigned int far SendChar (unsigned char Sfl, unsigned
char Tvalue);

main()
{
char count_hi,count_mid,count_lo, input;
long count_total;
float result, ref_freq;
int rate_gen;

/*Initialize the PC serial port as for 9600 baud, no parity, 8 bits,
1 stop*/
Setup(BAUD_9600, 3, COMM_1);

/*Initialize the ITC232 for Configure Results Ascii Program*/
ITC_send("CRAP\r");

/*Set Port B outputs bit 6 thru 0 high*/
ITC_send("PWB$7F\r");

/*Set Port B direction as bits 7 and 5 thru 0 as outputs, bit 6 as
input*/
ITC_send("PCB$BF\r");

/*Set PIT counter 0 mode to 2 (rate generator), two byte xfer,
binary counting*/
out_data(PIT_CONTROL,0x34);

/*Setup PIT counter 0 divide rate to 8.
 This example assumes a 8 Mhz oscillator, resulting a 1
microsecond
 time base. */

3

rate_gen = 8; /* 0x0008 */ /***************************************/
out_data(PIT_CTR_0,0x08); /*counter 0 low byte*/ /* out_data */
out_data(PIT_CTR_0,0x00); /*counter 0 hi byte*/ /* sets up 'bus' for a write operation */

/*Reset MMC, then setup for counting up, normal mode, carry void out_data(a,b)
enabled,
count gate enabled, binary count */
/* send master reset */
out_data(MMC_CONTROL, 0x20);
/* set input control register */
out_data(MMC_CONTROL, 0x78);
/* set output control register */
out_data(MMC_CONTROL, 0x80);
/* set quadrature control register */
out_data(MMC_CONTROL, 0xc0);

/* main loop is here, the process is stopped by hitting any key */
while(!kbhit())
{ hex string */
/* enable the flip flop one shot to enable counting */ if(b < 0x10)
ITC_send("PWB$FF\r"); strcat(string,"0");

/* now wait for either an IRQL or IRQH interrupt from the strcat(string,"\r");
ITC232 */
do
 {
 input = Receive(0,0);
 }
 while(input == 0); /* if nothing received, just wait */

if((char)input == 'H')
 {
 /* cycle has ended normally, disable gate and get counts */
 /* first disable the flip flops */

ITC_send("PWB$7F");
 /* request a transfer of the counts to the output latches */
 out_data(MMC_CONTROL, 0x03);
 /* start getting count values */
 count_lo = in_data(MMC_DATA);
 count_mid = in_data(MMC_DATA);
 count_hi = in_data(MMC_DATA);
 /* reset MMC counters for the next cycle */
 out_data(MMC_CONTROL, 0x04);
 /* combine the three byte wide counter reads into a single
value */

count_total = (count_hi << 16) + (count_mid << 8) +
count_lo;
 ref_freq = OSC_FREQ / rate_gen;

result = count_total / ref_freq;
 printf("\nInput Period = %2.6f seconds.", result);

 /* code can be entered here to evaluate the results and see if
the
 count value is too low. If so, the reference frequency can be
 increased */
 }
else
 {
 /* cycle has caused a counter overflow, first wait for gate to
 complete, disable counting, then print message */
do
 {
 input = Receive(0,0);
 }
 while(input == 0); /* if nothing received, just wait */
 /* disable the flip flops */
 ITC_send("PWB$7F\r");
 printf("\nOverflow\n");

 /* code can be entered here to reduce the reference
frequency */
 }

} /*end of while(kbhit... loop */
printf("\nInput Period Measurement function halted\n");

} /*end of main*/

/***************************************/

unsigned char a,b;
{
char string[8], value[3];

/* set string ends to NULLS */
string[7] = value[2] = NULL;

/* set port C to output */
ITC_send("PCC$FF\r");

/*setup data value on Port C*/
strcpy(string,"PWC$");
itoa(b, value, 16); /* convert the number to be sent to an ascii

strcat(string,value);

ITC_send(string);

/*setup register address */
itoa((a | 0x7c), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring chip select low */
itoa((a & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring write low */
itoa((a & 0x77), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring write high*/
itoa((a & 0x7f),value,16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/*bring chip select high */
itoa((a | 0x7c), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* then return to idle state */
ITC_send("PWB$7F\r");
}

/***************************************/
/* in_data */
/* sets up 'bus' for a read operation */
/***************************************/
char in_data(a)
unsigned char a;
{
char string[8], value[3], read_data;

RMV ELECTRONICS INC. #230 - 2250 Boundary Road • Burnaby, B.C. V5M 3Z3 Canada
Website: http://rmv.com Email: customer@rmv,com Phone 604 299-5173 Fax: 604 299-5174

/* set string ends to NULLS */ while((char)rval != '>'); /* continue looping until prompt
string[7] = value[2] = NULL;

/* set port C to inputs */
ITC_send("PCC$00\r");

/* setup register address */
itoa((a | 0x7c & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* bring chip select low */
itoa((a & 0x7f), value, 16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* bring read low*/
itoa((a & 0x7b),value,16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* read Port C */
ITC_send_no_wait("PRC$\r");
read_data = ITC_data();

/*bring read high*/
itoa((a & 0x7f),value,16);
strcpy(string,"PWB$");
strcat(string,value);
strcat(string,"\r");
ITC_send(string);

/* then return to idle state */
ITC_send("PWB$7F\r");

/*return value read*/
return read_data;
}

/**/
/* ITC_send */
/* sends a string out the comm port */
/* then waits for the ITC '>' prompt */
/**/
void ITC_send(str)
char *str;
{
int rval, tval;

while(*str != 0) /* loop until end of string (NULL) */
{

 do
 {
 tval = SendChar(0, *str); /* wait until tx buffer empty */
 }
 while(tval == 0xff00);

 str++; /* after sending character, go send the next one */
}

do /* after final character sent, went until '>' sent back
*/
 {
 do
 {
 rval = Receive(0,0); /* go get receive buffer status
and/or data */ result = result + (string[1] - 0x37);
 } return result; /* return results converted to a number */
 while(rval == 0); /* loop until a character received */ }
 }

character rx'd */

}

/***************************************/
/* ITC_send_no_wait */
/* sends a string out the comm port */
/* does not wait for any response */
/***************************************/
void ITC_send_no_wait(str)
char *str;
{
int rval, tval;

while(*str != 0) /* loop until end of string (NULL) */
{

 do
 {
 tval = SendChar(0, *str); /* wait until tx buffer empty */
 }
 while(tval == 0xff00);

 str++; /* after sending character, go send the next one */
}

}

/***************************************/
/* ITC_data */
/* retrieves the data recv'd from a */
/* port read operation */
/***************************************/
char ITC_data()
{
char string[3], value, *ptr, result;
int rval=0;

ptr = string;
string[2] = NULL;
do
 {
 do
 {
 rval = Receive(0,0);
 }
 while(rval == 0);
 switch(value = (char)rval)
 {
 case 'O': /* if characters are O, K, $, or >, ignore */
 break;
 case 'K':
 break;
 case '$':
 break;
 case '>':
 break;
 case 'L':
 printf("\nOverflow or Underflow has occured\n");
 break;
 default: /* otherwise characters should be results */
 (ptr++) = value; / put results in string */
 }
 }
while(value != '>'); /* continue looping until prompt character
rx'd */

/* string should now contain ascii hex value of result */
/* convert from hex string to a number */
if(isdigit(string[0]))
 result = (string[0] - 0x30) * 0x10;
else
 result = (string[0] - 0x37) * 0x10;
if(isdigit(string[1]))
 result = result + (string[1] - 0x30);
else

RMV ELECTRONICS INC. #230 - 2250 Boundary Road • Burnaby, B.C. V5M 3Z3 Canada
Website: http://rmv.com Email: customer@rmv,com Phone 604 299-5173 Fax: 604 299-5174 5

RMV ELECTRONICS INC. #230 - 2250 Boundary Road • Burnaby, B.C. V5M 3Z3 Canada
Website: http://rmv.com Email: customer@rmv,com Phone 604 299-5173 Fax: 604 299-5174 6

