
#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 1 of 24

WiZ232-A User’s Guide
Table of Contents

Chapter 1: INTRODUCTION 1

Chapter 2: WiZ232-A PIN ASSIGNMENTS 2

Chapter 3: MAIN FUNCTIONS OF THE WiZ232-A 4

Digital Input/Output 4
Interrupts 4
Serial Peripheral Interface 5
Get Analog 5

 Sampling AD Channels 6
 PWM 8
 Measuring a Resistor or Capacitor 8
 Period Measurement 9
 Stepper Motor Control 9
 Stepper Configuration Command 10
 Other Stepper Commands 11
 Using the WiZ232 Timer 12

Chapter 4: COMMANDS 12

 Error List 20

Chapter 5: ELECTRICAL SPECIFICATIONS 21

Appendix A

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 1 of 24

WiZ232-A User’s Guide

Chapter 1 INTRODUCTION

 The WiZ232-A is an integrated circuit containing a general purpose serial to parallel interface as
well as a number of embedded functions which find application in data acquisition and control
systems. It provides easy access, from a terminal or computer serial port (EIA RS-232C), to 24
input/output lines arranged in 5 ports which can be read or written with extremely simple ASCII
commands. This allows control from within a custom written program as well as from any
commercial communication software package (Terminal for Windows®, Procomm®, Telix® ,
MAC240® , etc). The possibility of operating the WiZ232-A from both a dumb terminal
program or a custom program is very convenient for system debugging.

The WiZ232-A is hardware independent; it will work with any terminal or computer with an RS-
232 serial port. The link requires 3 wires and operates at any standard speed between 9600 and
230400 Bauds. The main external components required by the WiZ232-A are a voltage driver to
handle the RS-232 voltages and a 7.3728 MHz crystal.

Features of the WiZ232-A include:

1 To send or receive data in either Decimal, Hexadecimal or Binary format.
2 Low interrupt recognition pin IRQL (serves multiple purposes).
3 15-15,000 Hz, 0-100% duty cycle Pulse Width Modulation with output pulse counting.
4 Software selectable Baud rates from 9600 to 230400.
5 Four channels for reading relative resistance or capacitance.
6 Advance stepper motor control port with all the necessary signals for using external

drivers, with full and half-step stepping modes. Acceleration-deceleration feature for
complex motion control. Stepping rates from 20 to 8500 steps/sec.

7 A one keystroke "Again" command to repeat the previous command.
8 A configuration report feature which sends the active configuration of any parallel port

and the PWM.
9 Embedded command for reading serial ADC (8, 10 & 12 bit resolution).
10 Automatic Sampling feature allows data collection in real time.

The flexibility, ease of use and multiple functions of the WiZ232-A, make it ideal for any
circuitry requiring computer control and/or data acquisition. Robotics, environmental control and
instrumentation are just a few examples of fields where the WiZ232-A finds application.

General Conventions

Throughout this manual ‘High’ is used as synonymous to binary 1 or 5V and ‘Low' as
synonymous to binary 0 or 0V. The term "terminal" includes computers and the term
"peripheral" refers to any circuit containing the WiZ232-A.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 2 of 24

Chapter 2 WiZ232-A PIN ASSIGNMENTS

Pin Out Description

Pin Number Symbol
Dip PLCC

Type Description

RESET 1 1 I Bringing this pin Low results in:
• All previous configurations are lost.
• PA, PB & PC are all configured as inputs.
• The Baud rate is set to 9600.
• The CRAD configuration is set as default.
• Pin PWM is pulled Low.
• The message:

WiZ232-A RMV Electronics Inc.

 followed by ASCII(#7), CR, LF and the ">"

(prompt) is sent out through pin 232 TX.

6 5 4 3 2 1 44 43 42 41 40

39

38

37

36

35

34

33

32

31

30

29

2827262524232221201918

17

16

15

14

13

12

11

10

9

8

7

WiZ232-A

P
A

6

P
A

7

N
C

V
P

P

IR
Q

L

R
E

S
E

T

V
D

D

O
S

C
1

O
S

C
2

C
IN

P
D

7

NC

PWM

PD5/PS_VDD

PD4/PS_CK

PD3/PS_TX

PD2/PS_RX

TX232

RX232

PC0

PC1

PC2

P
C

3

P
C

4

P
C

5

P
C

6

P
C

7

N
C

V
S

S

P
B

7

P
B

6

P
B

5

P
B

4

PA5

PA4

PA3

PA2

PA1

PA0

PB0

PB1

PB2

PB3

NC

VDD

OSC1

OSC2

CIN

PD7

PWM

PD5/PS_VDD

PD4/PS_CK

PD3/PS_TX

PD2/PS_RX

TX232

RX232

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

RESET

IRQL

VPP

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

VSS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

WiZ232-A PINOUT

44 PIN - PLCC 40 PIN - DIP

Diagrams are for pin reference only. Package
sizes are not to scale.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 3 of 24

Pin Out Description (cont. I)

Pin Number Symbol

Dip PLCC

Type Description

IRQL 2 2 I Edge sensitive only. Asserted on a High to Low
transition. Sends an L to the terminal (see
Interrupts).

VPP 3 3 Power +4.5 to +5.5 Volts referenced to VSS.

PA0-
PA7

4-11 5-12 I/O Parallel port A

PB0-
PB7

12-19 13-16
18-21

I/O Parallel port B.

VSS 20 22 Power Lowest digital voltage connected to the WIZ232-A.

PC0-
PC7

21-28 24-31 I/O Parallel port C. PC0..PC3: Used to measure
resistance or capacitance values. PC7… PC0 are
used by Stepper port C.

RX232 29 32 I Receives RS232-C serial data from terminal.

TX232 30 33 O Transmits RS232-C serial data to terminal.

PD2/P
S_RX

31 34 I/O Pin common to PD and PS (the Serial Peripheral
Interface or SPI). When SPI active this pin receives
data from a peripheral chip synchronized with the
clock on pin PD2/PS_CK (see Serial Peripheral
Interface).

PD3/P
S_TX

32 35 I/O Pin common to PD and PS. When SPI is active this
pin sends data to a peripheral chip synchronized
with PD2/PS_CK.

PD4/P
S_CK

33 36 I/O Pin common to PD and PS. When SPI is active this
pin clocks data in and out PS_TX and PS_RX. The
clock can be in phase or out of phase with the data
and idle Low or High according to the SPI
configuration sent from the terminal. This pin must
be tied via a suitable resistor to the clock idle
voltage. Failure to do this might result in the
peripheral missing the first clock pulse since
PD4/PS_CK is in a high impedance state until the
SPI becomes active.

PD5/P
S_VDD

34 37 I/O Pin common to PD and PS. To use the SPI this pin
must be tied to VDD using a appropriate resistor

PWM 35 38 O Pulse Width Modulation output.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 4 of 24

Pin Out Description (cont. II)

Pin Number Symbol

Dip PLCC

Type Description

PD7 36 40 I/O Port D bit 7

CIN 37 41 I Period Measurement input.

OSC2 38 42 O To crystal. If external clock applied to OSC1 then
OSC2 should be left unconnected.

OSC1 39 43 I Connect to external crystal or ceramic resonator.
Also, if external clock is used, it must be applied
here.

VDD 40 44 Power +4.5 to +5.5 Volts referenced to VSS.

Chapter 3 MAIN FUNCTIONS OF THE WiZ232-A

Digital Input/Output

The WiZ232-A has 6 ports. One is the RS232 port which links it to the terminal via pins 232TX
and 232RX. The other 5 ports can be used in your circuit and they are: PA, PB, PC, PD and PS.
PA, PB and PC are general purpose I/O 8 bit ports. These 24 pins can be individually configured
as inputs (high impedance) or outputs. In the latter case, pins can be individually addressed since
even though the entire port value must be written to a port, the pins remaining in their former
state will not change levels at any time. PD can be configured as a 5 bit input/output port which
shares pins with PS, a synchronous Serial Peripheral Interface (SPI) that can be used to
communicate with other chips such as a parallel in/serial out shift register. In the WiZ232-A pin
out diagram, PD and PS pins are labeled PDx/PSx.

PD is always available, while PS must be configured before being used. While all other ports can
be read without being configured first, any attempt to access PS before configuring it will result
in error ?2 (Port must be configured or enabled first). When a read or write command is issued to
PS, PD yields its pins to the SPI, the transaction takes place using the previously inputted
configuration for PS and then the pins are returned to PD.

While it is possible to use both PD and PS in an application, this is not recommended.
Upon start-up or reset, all PA, PB and PC pins are configured as inputs (high impedance), PD is
configured with PD3 and PD4 as outputs and PS is not configured at all. Caution must be
exercised when changing the input/output configuration of Port D as the pins PD3 and PD4 must
be configured as output in order to use the SPI. This is the default configuration after a reset.

Interrupts

Interrupts are characters sent from the WIZ232-A to the terminal to signal an event occurring in
the peripheral even while the WiZ232-A is engaged in other tasks such as stepping a motor or
generating a PWM signal. There is one interrupt pin: IRQL which detects a High to Low

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 5 of 24

transition. Note that the interrupt is only asserted when an EDGE is detected; the pin level is
irrelevant. When it is in an idle state the IRQL must remain High. In order to achieve this,
connect the IRQL pin to VCC (directly, if the IRQL is not used, or via a 10K resistor). The
interrupt pin serves several functions including stepper motor control and analog sampling.
Asserting the IRQL interrupt sends an ‘L’ to the terminal. No ‘OK’ is sent.

Serial Peripheral Interface (SPI)

In order to save pins, many IC manufacturers produce chips (such as A/D or D/A converters
among others) that communicate through a synchronous serial interface. The WiZ232-A SPI is
designed to communicate with these chips and accommodate the various communication
protocols they might require. The SPI operates as a fixed speed (115.2 KHz) circular shift
register of which 8 bits are inside the WiZ232-A and the other 8 (or more) bits are in a peripheral
chip. Thus, in order to clock data into the WiZ232-A, a value must be clocked out. When reading
the SPI, the WiZ232-A clocks out the last value written to the SPI or 0 if no value was
previously written.

Port D, which shares pins with the SPI, is always active. When an SPI operation takes place, the
corresponding configuration is loaded, the command is executed and the port returns to its
previous state. Important: (1) ALWAYS pull the clock pin of the peripheral chip to ground or
VDD (depending on whether the clock is required to idle Low or High) via a suitable resistor
value (otherwise the first clock transition might not be detected at all). If you also need to use
this pin for PD, place a 0.1-1 uF capacitor between your peripheral clock pin and PD4/PS_CK.
(2) To use PS, pin PD5/PS_VDD MUST be tied High. The best way to accomplish this is by
using a 10k resistor connected to VCC.

Get Analog

The WiZ232-A provides an easy way to read a serial Analog to Digital Converter (ADC) using
the SPI port. The command is very simple to use and the user just needs to provide the
resolution and the channel to read. This command is based on industry standard ADCs as
explained in the following table.

Part Name Resolution Number of
External
Channels

Special channels Manufacturer

MC145041 8 11 CH11: half scale (128) Motorola
MC145051 10 11 CH11: half scale (511) Motorola
TLC1543 10 11 CH11: half scale (511) TI

TLC2543

12

11

CH11: half scale (2047)
CH12: null (0)
CH13: full scale (4095)

TI

Syntax:

GA<Resolution><;><Channel>

It returns a 3 digit number (0-255) for 8 bit ADC’s and a 4 digit number (0-4095) for 10 & 12
bit ADC’s.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 6 of 24

Sampling AD Channels

The WiZ232 provides a simple way of getting samples from an analog signal. Speeds from 20
samples per second up to 2500 samples per second are attainable. This constitutes a Real Time
data acquisition feature. Real time sampling is useful for many applications such as Spectrum
Analysis using FFT, Digital Filtering of noise, etc. The basic idea is gathering data sampled by
the WiZ232 and storing this data for later evaluation on the host computer. This supposes that a
standard serial Analog to Digital Converter is connected to the SPI interface. Typically used
ADC chips are:

8 bit MC145041
10bit MC145051
12bit TLC1543

Configuring the Sampling

The Syntax for this command is:

GS <ADCres><;><ChEnbMask><;><[SampSpeed><;><Samples><;>{Gate}

ADCres : this is the resolution of the ADC: 8, 10 or 12 bit.

ChEnbMask: represents which channels are enabled for sampling: from 1 to 2047.

In order to enable a channel for sampling, use the following table to calculate the Mask
value:

Example:
To enable channels #0 , #1 &
#7 for sampling, the Mask value
would be:

Mask Value = 1+2+128 = 131

channel Add to mask
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

Sampling Mask Channels

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 7 of 24

SampSpeed: this is the sampling Speed in samples/second. '0' represents the highest
While '7' the lowest.

Sampling Rates

Sampling
Value

Sampling Period Samples per second

0 400 µs 2500
1 500 µs 2000
2 1 ms 1000
3 2 ms 500
4 5 ms 200
5 10 ms 100
6 20 ms 50
7 50 ms 20

Samples: the number of samples to be taken: 1 to 65535.

Gate: add a G if software gating is desired. If a software gate is not desired, i.e. the ‘G’ is
omitted in the GS command, a valid interrupt pulse must be sent to the interrupt input in order to
start sampling.

When this command is accepted and no errors are detected, the WiZ232 will send the
‘Acknowledge’ string (‘OK’), if not in CRAP mode. After this it will send all the samples and
when done, the WiZ232 will send a prompt ‘>’ (ASCII 62).

Gate Signal: In order to start the sampling, the user can send a gate pulse to the IRQL input.
This must be a valid transition pulse (from high to low), after which the WiZ232-A controller
will immediately start sampling.

Different formats are used for sending data to the host computer, depending on the ADC
resolution:

for 8 bit ADC's : *123
for 10 & 12 bit ADC's : *1234

Samples are sent without any spacing characters, and it is up to the user to store them in a buffer
properly arranged for this purpose.

High Speed Sampling: Sampling speeds with a sampling value less than '3' (1,000 to 2,500
samples per second) require the use of the WiZ232's internal RAM. Because of this, at those
speeds, samples are first stored in this RAM and then dumped to the serial port. This means that
the total number of samples that can be taken is limited to a maximum of 128 for 8 bit ADC,
and 64 for 10 & 12 bit ADC's. These figures are also affected by the number of channels
enabled. The stated sample maximums (128 & 64) are valid for only one enabled channel. For
sampling speeds of 2,000 and 2,500 samples per second, only two channels can be sampled in
the same sampling. A violation of this rule will result in an error message.

Several configurations can be tried in order to work out a solution for a given sampling
application if a sampling error is encountered. The first solution may be to increase the serial
port speed. The maximum number of samples available can be estimated by this equation:

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 8 of 24

R

C

+5

PC0..3

RESISTOR MEASUREMENT

Number of Samples = Serial Port Speed/50/Number of enabled channels.

The actual value for the sampling speed should be less than this. If the error persists, then two
alternative solutions are available. One is to enable fewer channels and perform the sampling in
two batches. The other, is to decrease the sampling speed.

Pulse Width Modulation (PWM)

PWM can be used in a number of applications such as generating an analog voltage or regulating
the speed of a D.C. motor (speeds down to a few turns per minute can thus be achieved with
minimal torque reduction). The possibility to generate a given frequency signal is also
advantageous. Besides the obvious creation of musical tones, this feature allows the production
of accurate time intervals.

The WiZ232-A features a PWM pin. The frequency and duty cycle of the pulses appearing on
this pin can be specified from the terminal. The frequency range is 15-15,000 Hz and the duty
cycle can be set from 0 to 100% in 1 % intervals. However, as the frequency increases it
becomes progressively more difficult to measure small time intervals accurately. Thus, the full
duty cycle range is only available up to 220 Hz for 1% duty cycle and 230 Hz for 99% duty
cycle. Increasing the frequency compresses the available duty cycle range around 50%. The
PWM pin can be also set High or Low. At power-up or reset the PWM pin is set Low.

Measuring a Resistor or Capacitor

The input impedance of port C on the Wiz232 is extremely high.
Thus, if an RC network is connected to an input pin as shown in the
following figure, then the time constant of the network can be
determined by measuring the time to reach a Low to High
transition.

Since for a given pin the transition point is constant if VDD is kept
constant, relative capacitance and resistance can be measured.
Values from one pin cannot be compared to those from another pin
because the transition points are not identical. The sequence used
by the WiZ232-A to carry out a reading after receiving Rn is as
follows:

1) The selected port is turned into a Low output for a short time in order to discharge capacitor
C.

2) The pin is turned into an input. A loop linked to the internal clock measures the time required
for the pin to become a logic High.

3) The result is sent to the terminal.

Note that the value returned is linearly proportional to the time to charge C to a certain voltage
and hence there is a linear relationship with the values of C or R. Due to minor differences in the
electrical characteristics of the input pins, readings are designed to be relative to a capacitance or
resistance standard used to calibrate a given pin. Use high quality, low leakage capacitors.
Polyethylene caps work best. Avoid electrolytic capacitors.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 9 of 24

The reading is linear (for both capacitance and resistance) between 10 and 32,767 relative units,
with an error, as small as 0.5 %, depending on the capacitor used. Should the time to read the R
network be excessive (a result > 32,767), Error ?7 (Time out error) will be sent to the terminal.
The range of resistance that can be measured ranges from 200 Ohms to 10 MegaOhms using
different capacitors for the desired range. We recommend against measuring resistors below 500
Ohms. For one, readings are less accurate than for those above 500 Ohms. Secondly, the chip
might be permanently damaged due to excessive current flowing through the pin when it goes
Low to discharge the capacitor.

Should PWM be enabled, expect the reading error to increase at frequencies over 5 KHz or when
a combination of frequency and duty cycle is close to the admissible limits since PWM interrupts
have priority over the timer used for the R command. The port need not be configured as an
input in order to obtain a value (the <R>esistance command takes care of it). However, keep in
mind that:

(1) Changing the pin configuration and writing to it, prior to reading a resistance, might
introduce differences as large as 10% in the readings (depending on the type of capacitor and its
value (a Siemens® 0.47 uF Poly capacitor yields a difference below 1%)). Thus, we strongly
recommend to keep the pin configuration and value unchanged between readings.

(2) A circuit connected to the port might interfere with the reading obtained unless its impedance
is very high compared to the resistance being measured.

(3) Changing the PWM frequency over a wide range between resistance readings might lead to
differences in readings which get larger as the returned value gets lower. Measuring resistors can
replace in many instances an A/D converter and it finds application in many different situations.
Some examples are robots, in which the absolute position of a mechanical element can be
followed-up by measuring a variable resistor attached to it, in measuring light intensity (with a
Cadmium sulfide cell) and even for measuring the conductance of a solution. For the latter, use
the PWM pin at ~1000 Hz to control a 4066 analog switch which alternates the electrodes
(representing here the resistance in the network) in order to avoid electrode polarization.

Period Measurement

Period measurement is done by using the GP (Get Period) function and uses the CIN pin of the
WiZ232 controller in order to get a period reading from an external signal.

Syntax: <GP> (no parameters).

GP returns the period of the signal in microseconds. The maximum period frequency which can
be measured is around 15 KHz (period = 66 µs) and 10 Hz (period = 100,000 µs) is the
minimum. If the user tries to read the period of a signal whose frequency is lower than the
minimum, or no signal is fed to the CIN pin, an error message will be sent (Error #7: Time out).

Stepper Motor Control

The WiZ232 features one stepper motor control port with all the necessary signals for controlling
external drivers, with monophasic, biphasic and half-step stepping modes. For a diagram
depicting the wave shapes for these three driving modes, refer to the Appendix. Acceleration and
deceleration are available for controlling complex motion control. Stepping rates from 16 to
8,500 steps/sec are supported by the WiZ232.

In the application of the stepper motor function of the WiZ232, the following rules apply:

1) Steppers are controlled through the upper 4 bits of PC.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 10 of 24

2) A configuration command must be sent in order to set the parameters for the motion of the
stepper motor.

3) Enabling a stepper turns the upper 4 bits of PortC into outputs. Disabling a stepper leaves the
corresponding pins as they were previously configured with the last value written to the stepper
in the corresponding phantom port bits (see PORT Commands).

4) While stepping the PWM is inactive. If the PWM pin was set High (WH) or Low (WL) it will
remain the same. If the PWM is in use while the stepper motor configuration command is sent,
an error message (?C ‘Timer not Available’) is sent. The solution is to disable the PWM using
either the WL or WH command.

When used for the control of stepper motors, the WZ232-A dedicates PORTC to handle the
signals required for this function. Pins PC4 through PC7 are used for stepper motor phase outputs.

Four additional signals on PORTC: Pulse, Trigger, Direction and Pause, and a Stop signal on the
IRQL (Interrupt pin) are also provided for greater functionality in controlling stepper motors with
the WiZ232-A. These signals operate as follows:

1. Pulse (PC3): This is a hardware output signal which goes high for approximately 12uS every

time a step is executed.
2. Direction (PC2): This hardware output signal is set to high (5V) for clockwise motion of the

stepper motor or low (0V) for counter-clockwise movements.
3. Pause (PC1): This hardware input signal pauses the motion of the stepper motor when its

input goes high. No further steps are taken until this signal is set to low (0V) once again. If
this hardware pause signal is not to be used, then pin PC1 must be connected to ground using
a 10 k Ohm resister.

4. Trigger (PC0): This hardware input signal is used to start the stepper motor. After sending a
configuration command, the WZ232-A will read the Trigger input until a low pulse (0) is
encountered. Upon reading ‘0’, the WZ232-A triggers the first step of the stepper motor. For
the trigger signal, the minimum pulse width is approximately 100uS. If this hardware only
trigger is not used, then pin PC0 must be connected to ground using a 10 k Ohm resistor.

5. Stop (IRQL): This is also a hardware input signal which uses the Interrupt pin of the WZ232-
A. During the movement of a stepper motor, if a negative edge signal (a transition from a high
state (5V) to a low state (0V)) is sent to the IRQL input, the motion will be stopped and an
ASCII ‘S’ will be sent to the host computer through the serial port.

Note 1: A ‘Stop’ command can also be executed by software by sending the ‘SS’ command. If
a software ‘Stop’ is executed before a valid interrupt signal is sent to the Interrupt pin, the
hardware stop will not function.

Note 2: Attempting to execute a PWCxx command while a motor is enabled will result in
error ? C (Stepper enabled, do disable first).

The Direction and Pulse signals can be used for external driver output, and the Pause and Trigger
signals for external control inputs.

Stepper Motor Configuration Command

In order to control a stepper motor, a configuration command with all the control parameters must
be sent to the WZ232-A. The command syntax for configuring the stepper controller is:

<S> <Mode> <Direction> <;> < Steps to Go> <;> <Slew Rate> <;> <Acceleration/Deceleration>

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 11 of 24

 <;> <Initial Rate>

Mode: H [half step] B [full step - biphasic] M [full step – monophasic]
Direction: + [clockwise] - [counter-clockwise]
Steps to Go: 1 to 8 million steps
Slew Rate: 16 to 8500 steps/second
Accel/Decel: 0 to 255 steps/second2
Initial Rate: 16 to 8500 steps/second

Note 1: There is no ‘;’ inserted between the [Mode] and [Direction] parameters in the
Configuration Command.

Note 2: The motion profile for acceleration and deceleration describes a trapezoid with the slew
rate the plateau of the trapezoid. If the number of steps to go is insufficient to reach the desired
speed, the slew rate is reduced until either the desired speed is achieved, or acceleration and
deceleration are equally split within the number of steps to go available. In this second case, the
desired speed may not be attained unless the acceleration/deceleration rate is increased.

 For the initial configuration of the stepper motor, all the parameters must be given.

Other Stepper Control Related Commands

For increased functionality, other stepper motor control commands are available. These commands
can be sent at any time after the configuration command has been sent.

SN Gets stepper position. By executing the SN command, the current position of the stepper

motor is sent to the WZ232-A. This command can be used to provide an ‘on-the-fly’
position reading. The position register is a 24 bit register which thought of as a single
axis bisected by a ‘0’ point. A single clockwise step of the stepper motor from an initial
position of ‘0’ results in a position register value of ‘1’. A single counter-clockwise step
from ‘0’ will result in a position register value of 8,388,609. As a practical rule, any
clockwise or positive movement increases the position register value closer to the value
8,388,607 and any counter-clockwise movement of the stepper motor increases the
position register value toward the value 16,777,215. If the position value goes higher than
16,777,215, the position register will overflow and reset to ‘0’. If the position value goes
higher than 8,388,607 the register will also reset to ‘0’.

 In order to calculate the sign of the position value apply the following calculation:

 For position values greater than 8,388,607 (which is the largest positive position):

 Position = 8,388,608 – Current position value

 For position values less than 8,388,607 no calculation is necessary. The value is positive

and read as it is.

SR Reset stepper position. This command resets the position value to ‘0’. This command can

only be executed while the motor is not moving.

SD Disable stepper motor. This shuts off all outputs to the external driver. Once this

command is executed, the stepper configuration command and all the parameters must be
sent again to operate the motor.

SS Stop stepping. This command is the software equivalent of a hardware stop.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 12 of 24

S? Returns the current status of the motor. A returned value of ‘1’ means that the motor is

not running and can accept configuration commands, while a returned value of ‘0’
indicates that the motor is running and cannot accept any configuration commands.

Using the WiZ232 Timer

Several functions make use of the 16 bit Timer Counter on the WiZ232. This resource can be
only dedicated to perform a single task at a time. Because of this limitation, some functions can
not be executed at the same time. This means that these tasks are exclusively executed. The
functions that can not be executed in a ‘shared mode’ are:
- Stepper Motor Control
- PWM
- Analog Sampling
If any of these three is enabled, none of the others can be executed until the one which is being
performed is finished or is disabled by the user.
For example, if an application requires that a stepper motor and PWM work at the same time, this
represents a violation of the above mentioned. In this case, trying to enable the PWM while the
stepper motor is running will cause an error message to be generated. (#C Timer not available).

Chapter 4 COMMANDS

Commands are always sent in ASCII format and they must be followed by a carriage return (CR
or ASCII(#13)). Upper or lower case and spaces may be added for clarity (with the exception of
the semicolon <;> which is reserved as a separator for command parameters). The last character
sent back to the terminal is always the > prompt (this is useful from within a custom program to
determine when the WiZ232-A is done with a command). An erroneous command returns ?n
where ? indicates an error and n is the error code (from $1 to $F, see ERROR LIST). The error
code number is followed by an error message unless the CRAP configuration is in use.

There are 2 types of commands: procedures and functions. A procedure command executes an
action. A function command may or may not execute an action but it always returns a result. A
successful procedure type returns OK (a CR and a LF is inserted before the OK and before the >)
unless the CRAP configuration is in use. A successful function command returns OK{$}value
where {} means optional and $ applies only to results in Hexadecimal (this allows to input the
hexadecimal result directly into a numeric variable in some programming languages). When
Value is one byte long, results can be requested in either Decimal (3 digits), Hexadecimal (2
digits preceded by $) or Binary (8 digits in two 4 bit groups (nibbles) separated by a space).
Functions returning numbers that might be higher than 255 are always returned in Decimal
format

At power-up the default configuration for results is CRAD (Decimal). The default format can be
changed at any time with the CONFIGURE RESULTS command. To override the default format
for one reading, add B or % for Binary, D for Decimal or H or $ for Hexadecimal AFTER the
command (e.g. PRA will return the value in Port A in the default format, e.g. Decimal. PRAB
will return it in ASCII binary, but only this once; next time PRA will return the result back in
decimal).

As previously noted, when issuing a 1 byte number in a command, any of the three formats can
be used. The default is Decimal. To send 1 byte Hexadecimal numbers to the WiZ232-A,
precede the number with an H or a $ and for Binary numbers, precede the value with B or %. If
you are issuing commands in Decimal you can use single, double or triple digit numbers (1 = 01
= 001). However, in Hexadecimal, two digits must be entered ($F is incorrect, it must be $0F). In

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 13 of 24

binary, all 8 bits must be specified (B111 is incorrect, must be B00000111). Any number that
might require more than 1 byte (e.g. the speed of a stepper motor) must be issued in Decimal
format. In addition, some commands require that all arguments or parameters are passed in
Decimal format.

Commands are arranged alphabetically; commands starting with P are port commands, S are
stepper motor commands and so on. Entering Esc (ASCII(#27) at any point of a command erases
the command. A new ">" prompt is then issued.

List of Commands (In alphabetical order):

Characters within <> are mandatory, the rest of the command word is included for explanatory
purposes. Items within {} are optional.

<@>gain Again command.

Procedure or Function type.

The @ character echoes the last command to the terminal (unless the CRAP configuration is
active in which case the command will be executed but no echo will be sent) and repeats its
execution. If no previous command were issued @ has no effect.

aud rate <9600>, <57600>,<115200> or <230400> Baud rate.

Procedure type.

Selects the Baud rate regardless of the Baud pin level. The command is acknowledged before the
Baud rate changes and a prompt is also sent. This means that the next command must be sent to
the WiZ232 using the new baud rate.

<C>onfigure <R>esults <A>SCII inary or Configuring the default format for results
<D>ecimal or <H>exadecimal or <P>rogram.

Procedure type.

The WiZ232-A can return results in Decimal, Binary and Hexadecimal format. The default, upon
reset or power-up, is Decimal. To change it (at any time) use this command. The CRAP
configuration is optimized for operating the WiZ232-A from a user written program and it differs
from the other configurations in the following:

* No CR or LF are inserted.
* The format default for results is Decimal (it can be overridden adding B or %, H or $ after
 a command).
* The following are disabled:

 Error messages (only ?n (n = error number) is sent to the terminal). ¤ PCp? (where p
 = A, B, C or S).

Actual frequency returned to the terminal when issuing a PWM command.
*An attempt to obtain information not available with CRAP enabled will result in error ?3.

.
GA<Resolution><;><Channel> Get Analog Signal

Function type.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 14 of 24

It returns a 3 digit number (0-255) for 8 bit ADC’s and a 4 digit number (0-4095) for 10 & 12
bit ADC’s.

<GP> (no parameters). Get Period of Signal

Function type.

GP returns the period of the signal in microseconds. The maximum period frequency which can
be measured is around 15 KHz (period = 66 µs) and 10 Hz (period = 100,000 µs) is the
minimum. If the user tries to read the period of a signal whose frequency is lower than the
minimum, or no signal is fed to the CIN pin, an error message will be sent (Error #7: time out).

GS <ADCres><;><ChEnbMask><;><SampSpeed><;><Samples><;>{Gate} Get Sample

Function type.

<ADCres>: this is the resolution of the ADC: 8, 10 or 12 bit.
<ChEnbMask>: represents which channels are enabled for sampling: from 1 to 2047.
<SampSpeed>: this is the sampling Speed in samples/second. '0' represents the highest
While '7' the lowest.
<Samples>: the number of samples to be taken: 1 to 65535.
{Gate}: add a G if software gating is desired

For the parameter ChEnbMask, in order to enable a channel for sampling, the user should use
the following table:

Example:
For sampling channels #0 , #1
& #7 the Mask value would be:
Mask Value = 1+2+128 = 131

Channel Add to mask
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

Sampling Mask Channels

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 15 of 24

For the parameter SampSpeed use the following table to determine the correct sampling speed
value:

SAMPLING RATES

Sampling
Value

Sampling Period Samples per second

0 400 µs 2500
1 500 µs 2000
2 1 ms 1000
3 2 ms 500
4 5 ms 200
5 10 ms 100
6 20 ms 50
7 50 ms 20

<P>ort <C>onfigure <A> or or <C> or <D> <Value>. Configure Parallel ports PA, PB,

PC and PD

Procedure type.

Each pin can be individually configured as an input or an output according to the corresponding
bit in <Value> (0 for input, 1 for output). Preceding <Value> with an H or $ for Hexadecimal, B
or $ for Binary and D for Decimal overrides the default. For example, to configure the lower 4
bits of PB as inputs and the higher 4 bits as outputs the following commands can be used: PCB
$F0, PCB B1111 0000, PCB 240 or PCB D240 (spaces are allowed but not mandatory).

<P>ort <C>onfiguration <A> or or <C> or <D> or <S> <?> Return port
{B,%,D,H or $}. configuration

Function type.

Returns the port configuration (not available when CRAP is active). For example, after
configuring PB as above and having CRAB as default, PCB? will yield OK 1111 0000 and
PCB?D will yield OK 240. <S> applies to the SPI.

<P>ort <C>onfigure <S>erial <R>ead or <W>rite or <A>ll <V>alue. To configure the SPI

Procedure type.

 Some serial chips need only to be read. Others might only be written to and finally, some
devices require to be both read and written to. Both read only and write only peripheral chips
might be simultaneously connected to the SPI and they might require different communication
configuration. Thus the <R>, <W> and <A> in the command (<A>ll means both read and write).

When writing out a value, the SPI is first configured as per the last PCSW command (if no
previous configuration entered, error ?2 (Port must be configured or enabled) first will occur.
When reading data in, the SPI is configured as per the last PCSR command.

When a read operation takes place, the <R>ead configuration is enabled, the last value written to
the SPI (or 0 if none yet) is clocked out and the value from the peripheral is clocked in and sent
to the terminal. Beware that the value is written out in the <R>ead configuration and therefore

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 16 of 24

should another peripheral to which you normally write (using a different <W>rite configuration)
be connected to the SPI, it might interpret the data wrongly. It is recommended that you use a
parallel port pin to select the device when more than one chip is connected to the SPI.

<V>alue specifies whether the SPI is enabled or not, the clock polarity, whether the clock and
the data are in phase or not and the sense of the byte (some chips send data MSB (Most
Significant Bit) first while others send the LSB (Least Significant Bit) first). The Table below
shows the function of the different bits in <V>alue:

Bit 7 Must be 1 in order to enable the SPI.

Bits 6,5,4,3 Irrelevant.

Bit.2 Determines the polarity of the clock (PD4/PS_CK pin).
POL 0 = the clock idles Low.
POL 1 = the clock idles High.

Bit.1 Controls the clock phase (PD4/PS_CK pin).
PHASE 0 = In phase with data.
PHASE 1 = Out of phase with data.

Bit.0 Controls the order of the bits received by the SPI. This is useful in some cases when a
peripheral sends the byte "backwards".
ORD 0 = The order is preserved.
ORD 1 = The order of the bits is reversed (MSB <--> LSB)

The following Table shows all possibilities:

BIT 7 6 5 4 3 2 1 0 HEX DEC

 1 0 0 0 0 0 0 0 $80 128
 1 0 0 0 0 0 0 1 $81 129
 1 0 0 0 0 0 1 0 $82 130
 1 0 0 0 0 0 1 1 $83 131
 1 0 0 0 0 1 0 0 $84 132
 1 0 0 0 0 1 0 1 $85 133
 1 0 0 0 0 1 1 0 $86 134
 1 0 0 0 0 1 1 1 $87 135

To disable the SPI, any configuration with Bit.7 = 0 (any decimal < 128 or hex < $80) will do.
Important: Pin PD5/PS_VDD need not be pulled High for a configuration command to be
successful but it is mandatory to read or write to the SPI (otherwise error ?B will be issued).
As with the other ports, PCS?{number base} returns <Value> in the specified {number base}or
in the default format.

<P>ort <R>ead <A> or or <C> or <D> {B,%,D,H,$}. Reading a parallel port

Function type.

When reading a parallel port which has pins configured as outputs, the value returned in the
corresponding bits is the present state of those pins (0 if nothing written to the port since power-
up or reset).

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 17 of 24

<P>ort <W>rite <A> or or <C> or <D> {B,%,D,H,$} <Value>. Writing to a parallel
port:

 Procedure type.

When writing to a pin configured as an input, the pin remains in a high impedance state.
However, the value is stored in a phantom bit which might be thought of being present behind
the actual port bit. Thus, if you write to an input pin and the configure it as an output pin, the
value in the phantom bit will be immediately transferred to the corresponding pin (this can lead
to unwanted values in a port pin if this is not kept in mind). After a reset or upon start-up the
value in all phantom bits is 0.

Note: Attempting to execute a PWAxx command while a motor is enabled will result in error ?A
(Stepper enabled, do disable first).

<P>ort <R>ead <S>PI {B,%,D,H,$} Reading from the SPI

Function type.

<P>ort <W>rite <S>PI {B,%,D,H,$} <Value> Writing to the SPI

Procedure type.

The <P>ort <R>ead and <P>ort <W>rite commands work in a fashion similar to that of the
parallel ports with the following exceptions:

1) Pin PD5/PS_VDD must be tied High. Otherwise, the error message: “?B SPI requires pin
PD5/PS_VDD always high, change and try again.” is sent to the terminal.

2) The relationship between configuration and pin value is different.

3) There is no phantom port storing the last written value as happens with PA, PB and PC.

4) IMPORTANT: The SPI can be considered as a circular serial shift register in which the 8 bits
in the port are circulated through a peripheral chip. In order to read a value into the SPI, a value
must be written out. This value is the last written value to the SPI or 0 if no writing took place
between the configuration and a reading. There are some particular situations that should be
avoided or handled with care:

a. Connecting 2 peripheral chips to the SPI, one which is read from and the other which is
written to while having them both enabled simultaneously. This will result in the re-writing of
the latter when reading the former. The value written will be the same as last time, but the data
on the peripheral chip will jump up and down as the byte is shifted in at a speed of 115.2 KHz.
In addition to this, if the write and read configurations are different it is almost certain that the
chip to be written will misinterpret the data. To prevent this, use pins from PA,PB or PC to
enable or disable the chips connected to the SPI as required.

b. Connecting a peripheral chip that requires both writing and reading to operate, e.g. the
Motorola® MC145041 Analog/Digital converter.

<RESET> Resets the WiZ232-A

Procedure type.

This command is self explanatory. It has the same effect as a hardware reset.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 18 of 24

<R>esistance <0> or <1> or <2> or <3>. Measure resistor or capacitor

Function type.

0-3 represent the bits or pins on PC.

S <Mode> <Direction> <;> < Steps to Go> <;> <SlewRate> Stepper Configuration & Control
<;> <Acceleration/Deceleration> <;> <Initial Rate>

 Process type

Mode: H [half step] B [full step - biphasic] M [full step – monophasic]
Direction: + [clockwise] - [counter-clockwise]
Steps to Go: 1 to 8 million steps
Slew Rate: 16 to 8500 steps/second
Accel/Decel: 0 to 255 steps/second2
Initial Rate: 16 to 8500 steps/second

Note 1: There is no ‘;’ inserted between the [Mode] and [Direction] parameters in the
Configuration Command.

<SN> Stepper Position

 Function type

Gets stepper position. By executing the SN command, the current position of the stepper motor is
sent to the WZ232-A. This command can be used to provide an ‘on-the-fly’ position reading. The
position register is a 24 bit register which can be thought of as a single axis bisected by a ‘0’ point.
A single clockwise step of the stepper motor from an initial position of ‘0’ results in a position
register value of ‘1’. A single counter-clockwise step from ‘0’ will result in a position register
value of 8,388,609. As a practical rule, any clockwise or positive movement increases the position
register value closer to the value 8,388,607 and any counter-clockwise movement of the stepper
motor increases the position register value toward the value 16,777,215. If the position value goes
higher than 16,777,215, the position register will overflow and reset to ‘0’. If the position value
goes higher than 8,388,607 the register will also reset to ‘0’.

 In order to calculate the sign of the position value apply the following calculation:

 For position values greater than 8,388,607 (which is the largest positive position):

 Position = 8,388,608 – Current position value

 For position values less than 8,388,607 no calculation is necessary. The value is positive

and read as it is.

If the stepper has not been previously configured, the use of this command will return an error #D
(Stepper Motor not Enabled)

<SD> Disable stepper motor

Process type

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 19 of 24

This turns off all outputs to the external driver. Once this command is executed, the stepper
configuration command and all the parameters must be sent again in order to operate the motor.

<SR> Reset stepper position.

Process type

This command resets the position register value to ‘0’.

<SS> Stepper stop

Process type

Stops the stepper motor and holds the state of the phase outputs. (i.e. it keeps the
windings on) This command is the software equivalent of a hardware stop.

<S?> Get stepper motor status

Function type

Returns the current status of the motor. A returned value of ‘1’ means that the motor is not
running and can accept configuration commands, while a returned value of ‘0’ indicates that the
motor is running and cannot accept any configuration commands.

<W>idth <frequency>. Sets PWM frequency

Function type.

<frequency> can be any value between 15 and 15,000 Hz and it must be specified in decimal
format. This command assumes a 50% duty cycle is required. The actual frequency is sent to the
terminal (see note #1 below).

<W>idth <frequency> <;> <Duty cycle>. Sets PWM duty cycle

Function type.

<Frequency> is the same as above, the <;> is mandatory and <Duty cycle> is an integer from 0
to 100 indicating the percentage of the cycle during which the PWM pin is High.

Notes:

1) Upon entering these commands the WiZ232-A returns f=XXXXX (not available in the CRAP
configuration). XXXXX is always a 5 digit long decimal number and is the integer part of the
actual frequency the WiZ232-A is putting out (due to calculation rounding and timing
restrictions). The actual frequency is given by the expression: Af = 921600 ÷ Round (921600 ÷
Rf) where Af is the actual frequency and Rf is the requested frequency. Af should be within the
precision of the crystal.

2) During the stepping of a stepper motor:
 (a) If WL or WH are active then the pin stays as it is.
 (b) If PWM is pulsing, the PWM pin is brought Low during stepping.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 20 of 24

3) If <Duty cycle> = 0 or 100, then <frequency> is irrelevant, the PWM pin will stay Low or
High respectively. Another way to achieve this is by using the <WL> and <WH> commands.

4) <Duty cycle> can be varied in 1 % intervals, however, as the frequency increases it becomes
progressively more difficult to generate very small or very large duty cycles. If a particular duty
cycle cannot be achieved for a given frequency, the ?8 ‘Frequency too high for requested duty
cycle’ error will occur. The highest frequencies require duty cycles around 50% whereas for
frequencies below 220 Hz, 1% or 99% duty cycles are possible.

<W>idth <frequency> <;> <Duty cycle> <;> <no. of pulses> Sets PWM duty cycle & output

pulse counter

 Procedure type

The same as above, but with this command the number of pulses to be generated by the PWM pin
can be controlled. This number can be between 1 and 16 million. If the duty cycle parameter is not
needed, then the syntax can be <W>idth <frequency> <;> <;> <no. of pulses>. When all the
pulses have been generated, an ASCII ‘P’ is sent to the host computer signaling the end of the
task.

<W>idth <H>. Forces the PWM pin High.

Procedure type.

<W>idth <L>. Forces the PWM pin Low.

Procedure type.

This command is internally issued at power-up or reset.

<W>idth <?>. Return last <W> command issued

Function type.

Returns the last <W> command issued (the requested frequency, not the actual frequency). Not
available under the CRAP configuration. Issued immediately after a reset or start-up, the W?
command returns WL.

Error List

?1 Syntax error.
?2 Port must be configured or enabled first.
?3 Command not allowed in current configuration.
?4 No such port.
?5 Value out of range or syntax error.
?6 Pin configured as an output.
?7 Time out error.
?8 Frequency too high for required duty cycle.
?9 Baud rate not supported.
?A Stepper enabled, do disable first
?B SPI requires pin PD3/SS always high, change and try again.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 21 of 24

?C Timer not available.
?D Stepper motor not enabled.
?E Stepper running, do stop first.
?F Too many channels or speed too high.

Chapter 5 ELECTRICAL SPECIFICATIONS

Maximum Ratings (Voltages referenced to VSS)

Rating Value Units
Supply Voltage -0.3 to + 7.0 V
Input Voltage VSS-0.3 to VDD+0.3 V
Current drain per pin 25 mA
Storage temperature range -65 to +150 Deg. Celsius
Operating temperature range 0 to +70 Deg Celsius

DC Electrical Characteristics (VDD-VSS = 5.0 VDC)

Characteristic Min Typ Max Units
Output Voltage
(I<10uA)

VDD-0.1

-

0.1

V

Output Voltage
(i=0.8mA)

VDD-0.8

-
0.4

V

Input High
(PA,PB,PC,PD,
IRQ's,BAUD,232
RX,RESET)

0.7 x VDD

-

VDD

V

Input Low
(PA,PB,PC,PD,
IRQ's,BAUD,232
RX,RESET)

VSS

-

0.2 x VDD

V

Supply Current 4.7 7.0 - mA
Hi-Z input
leakage current
(PA,PB,PC,PD)

-

-

10

uA

Capacitance
PA,PB,PC,PD

-

-

12

pF

Capacitance
RESET, IRQ,
232 TX,232 RX,
BAUD

-

-

8

pF

Notes:
 1. All values show average measurements.
2. Measurements were made at 25oC.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 22 of 24

PLEASE READ THIS CAREFULLY:

RMV ELECTRONICS INC. does not assume any liability arising from the application and/or use
of the product/s described herein, nor does it convey any license rights. RMV ELECTRONICS
INC. products are not authorized for use as components in medical, life support or military
devices without written permission from RMV ELECTRONICS INC.

The material enclosed in this package may not be copied, reproduced or imitated in any way,
shape or form without the written consent of RMV ELECTRONICS INC. This limitation also
applies to the firmware that the Integrated Circuit in this package might contain.

© 1999 RMV Electronics Inc.

#300 - 3665 Kingsway, Vancouver, BC, V5M 5W2, Canada
Phone: 604-299-5173 Fax: 604-299-5174

Page 23 of 24

APPENDIX A

1 2 3 4 5 6 7 8 1

PA4

PA5

PA6

PA7

PA4

PA5

PA6

PA7

PA4

PA5

PA6

PA7

Half Step Driving

Biphasic Driving

Monophasic Driving

Step

Stepping Modes

PA3

